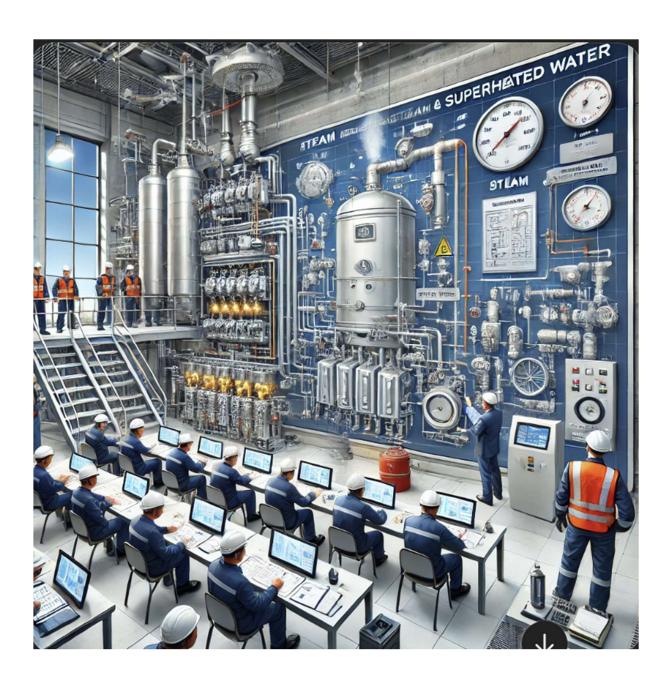
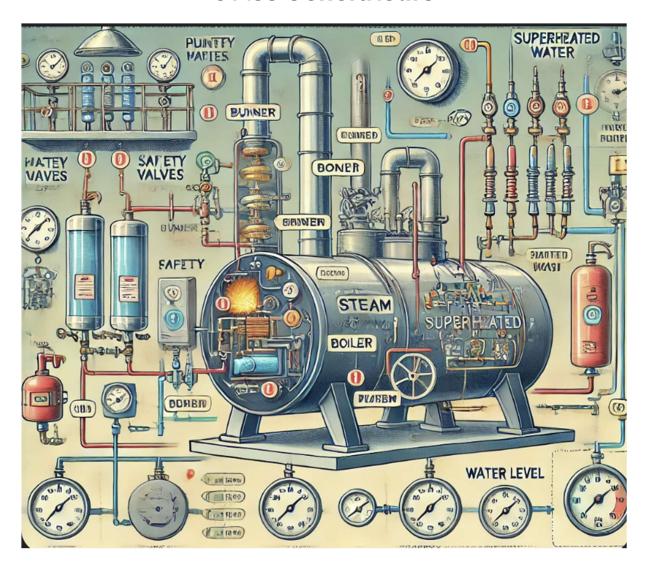

# Formation Habilitation Chaufferie Vapeur / Eau Surchauffée / RONDIERS NIVEAU 1




# Contexte Réglementaire


- Réglementation française : Arrêté du 20 novembre 2017 relatif à l'exploitation des équipements sous pression (ESP).
- Obligation de qualification pour le personnel assurant la surveillance et l'exploitation de ces installations.
- Objectifs : Sécuriser l'exploitation, protéger les personnes, les biens et l'environnement.

# Objectifs de la Formation

- 1. Acquérir les connaissances nécessaires pour surveiller un générateur de vapeur ou d'eau surchauffée en toute sécurité.
- 2. Appliquer les consignes de sécurité et identifier les anomalies.
- 3. Obtenir l'habilitation officielle pour devenir « rondier chaufferie vapeur eau surchauffée ».



# Module 1 : Notions Générales sur les Chaufferies et les Générateurs



# 1.1 Les Équipements Sous Pression (ESP)

Définition : Les Équipements Sous Pression (ESP) regroupent tous les dispositifs contenant un fluide (liquide ou gaz) sous une pression supérieure à 0,5 bar. Ils incluent les générateurs de vapeur, les générateurs d'eau surchauffée, et les accessoires associés.

#### Caractéristiques des ESP:

- Haute température et haute pression augmentent les risques (explosions, fuites).
- La surveillance rigoureuse est essentielle pour prévenir les accidents.

#### 1.2 Principe de Fonctionnement

#### 1.2.1 Générateurs de Vapeur :

- Fonctionnement : La chaudière chauffe l'eau à une température élevée, générant de la vapeur sous pression.
- Applications:
  - Chauffage industriel.
  - Production d'énergie (turbines à vapeur).
  - Procédés industriels (stérilisation, nettoyage).

#### 1.2.2 Générateurs d'Eau Surchauffée :

- Fonctionnement : L'eau est chauffée au-delà de son point d'ébullition sans qu'elle ne se transforme en vapeur (sous pression).
- Applications:
  - Réseaux de chauffage urbain.
  - Centrales thermiques.

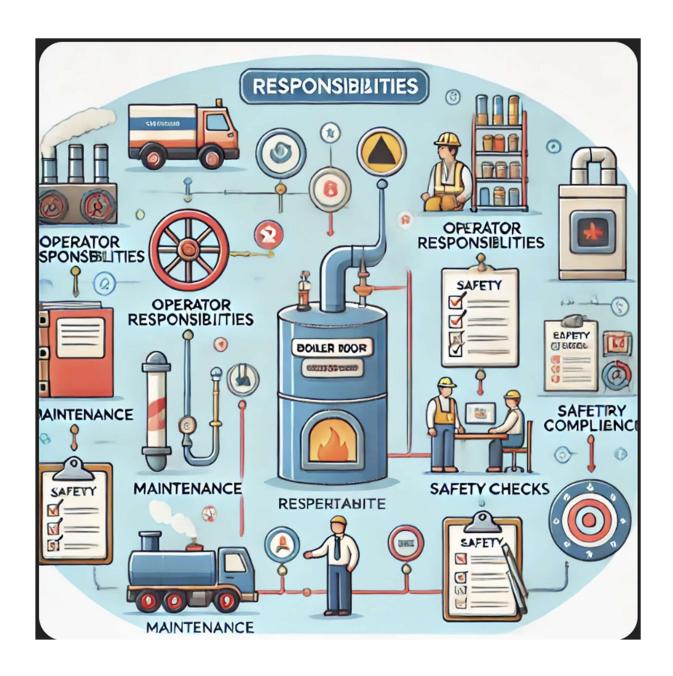
#### 1.3 Constitution d'une Chaufferie

Une chaufferie est un ensemble complexe d'équipements interconnectés permettant la production, le contrôle et la distribution de vapeur ou d'eau surchauffée.

#### **Composants principaux:**

#### 1. Chaudière:

- Contient l'eau ou le fluide à chauffer.
- Construction en acier ou en fonte pour résister à la pression et à la chaleur.


#### 2. Brûleur:

- o Fournit la source de chaleur (combustion de gaz, fioul ou biomasse).
- 3. Circuits d'alimentation en eau et en combustible :
  - Alimente la chaudière de manière continue.
- 4. Dispositifs de régulation et de sécurité :
  - o Manomètres : Surveillance de la pression.
  - o Thermomètres : Contrôle de la température.
  - Soupapes de sécurité : Évacuation en cas de surpression.

#### 5. Circuits de distribution :

- Transportent la vapeur ou l'eau surchauffée vers les points d'utilisation
- Résumé des Points Clés
- Les générateurs de vapeur et d'eau surchauffée jouent un rôle crucial dans les processus industriels et énergétiques.
- Leur fonctionnement repose sur des principes de thermodynamique : pression, température, et énergie thermique.
- La surveillance rigoureuse de leurs composants est essentielle pour garantir une exploitation en toute sécurité.

# Module 2 : Réglementation et Responsabilités



#### 2.1 Réglementation Applicable

#### Contexte réglementaire :

- Arrêté du 20 novembre 2017 : Régit les conditions de surveillance et d'exploitation des Équipements Sous Pression (ESP).
- Obligations réglementaires :
  - o L'exploitant doit garantir la conformité des installations.
  - Le personnel chargé de la surveillance doit être formé, habilité et compétent.
  - Une documentation complète doit être maintenue à jour (registre d'exploitation, consignes de sécurité, certificats de conformité).

# Exigences clés pour les rondiers :

- 1. Formation qualifiante sur les risques des ESP.
- 2. Habilitation pour surveiller les générateurs vapeur et eau surchauffée.
- 3. Suivi strict des consignes spécifiques de l'établissement.

# 2.2 Rôles et Responsabilités du Rondier Chaufferie

#### Rôle principal:

 Assurer en toute sécurité la surveillance et l'exploitation des générateurs vapeur ou eau surchauffée, avec ou sans présence humaine permanente.

#### Responsabilités clés :

- 1. Surveillance continue:
  - o Effectuer des rondes régulières.
  - Identifier et signaler les anomalies (niveau d'eau, température, pression).
- 2. Application des consignes :
  - Respecter les procédures de l'établissement.
  - o Intervenir en cas d'urgence selon les protocoles établis.

#### Compétences attendues :

- Compréhension des principes de fonctionnement des ESP.
- Maîtrise des consignes de sécurité et des outils de diagnostic.
- Capacité à réagir rapidement face aux incidents.

#### 2.3 Documents et Consignes de Référence

### **Documents obligatoires:**

### 1. Registre d'exploitation :

- Historique des opérations (températures, pressions, anomalies détectées).
- Vérifications périodiques.

### 2. Consignes de sécurité :

- o Instructions spécifiques à l'installation (alarmes, soupapes).
- o Procédures à suivre en cas d'urgence.

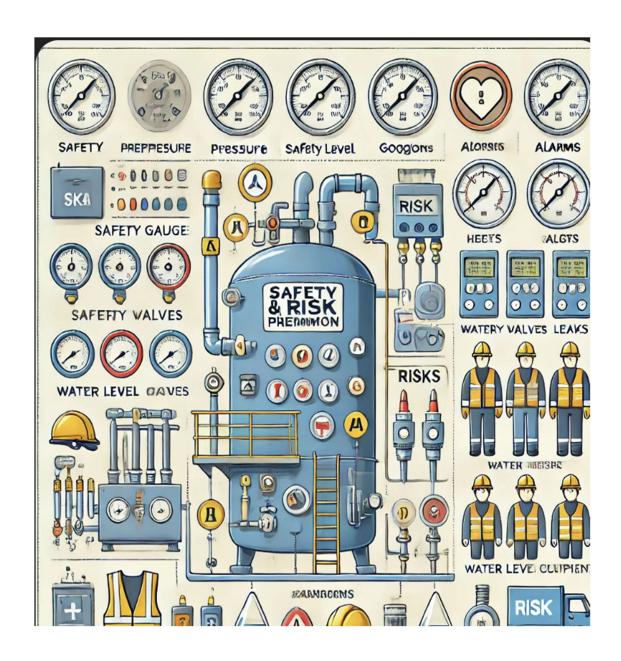
#### 3. Plan d'intervention en cas d'incident :

- o Étapes claires pour la mise en sécurité des installations.
- Coordonnées des intervenants d'urgence.

# 2.4 Exigences de Qualification et d'Habilitation

#### Habilitation du rondier:

- Certification obligatoire délivrée après formation.
- Atteste des compétences techniques et des connaissances en matière de sécurité.


#### Mise à jour des connaissances :

 Formation continue nécessaire pour s'adapter aux nouvelles réglementations et technologies.

#### Résumé des Points Clés:

- 1. La réglementation impose une stricte surveillance des ESP.
- 2. Le rondier joue un rôle essentiel dans la sécurité et la fiabilité des chaufferies.
- 3. La documentation et les consignes de sécurité sont des outils indispensables à la surveillance efficace.

# Module 3 : Sécurité et Prévention des Risques



#### 3.1 Identifier les Risques

Les principaux risques liés aux chaufferies vapeur et eau surchauffée sont :

### 1. Surpression:

- o Risque majeur pouvant provoquer l'explosion de l'installation.
- Causes fréquentes :
  - Défaillance des soupapes de sécurité.
  - Mauvaise régulation de la pression.
- Conséquences:
  - Dommages matériels graves.
  - Risques pour la vie humaine.

#### 2. Fuite de vapeur ou d'eau surchauffée :

- Dangers pour le personnel :
  - Brûlures graves.
  - Inhalation de vapeur toxique dans certains cas.
- Sources des fuites :
  - Corrosion.
  - Joints usés ou installation mal entretenue.

#### 3. Défaillance mécanique :

- Matériaux fatigués ou corrodés.
- Vibrations excessives.
- Dysfonctionnement des capteurs et systèmes de régulation.

#### 4. Erreurs humaines:

- Mauvaise manipulation des équipements.
- o Non-respect des consignes de sécurité.

#### 3.2 Dispositifs de Sécurité

Les dispositifs de sécurité sont essentiels pour prévenir les accidents. Ils incluent :

#### 1. Soupapes de sûreté :

Protègent contre la surpression.

 S'ouvrent automatiquement lorsque la pression dépasse un seuil critique.

#### 2. Manomètres:

- Mesurent la pression dans les chaudières.
- o Permettent une surveillance en temps réel.

#### 3. Indicateurs de niveau d'eau:

- Contrôlent le niveau d'eau dans la chaudière.
- Un niveau trop bas peut entraîner une surchauffe et endommager les équipements.

#### 4. Alarmes et automatismes :

- o Détection des anomalies (température, pression, niveau d'eau).
- o Arrêt automatique de l'installation en cas de dépassement des seuils.

#### 5. Dispositifs anti-explosion:

 Évents ou plaques de rupture conçus pour libérer la pression de manière contrôlée.

#### 3.3 Mesures de Prévention

Les rondiers doivent suivre des protocoles stricts pour minimiser les risques :

- 1. Port des Équipements de Protection Individuelle (EPI):
  - Casque pour éviter les blessures par chute d'objets.
  - Lunettes pour protéger contre les éclaboussures de vapeur ou d'eau chaude.
  - o Gants thermiques.
  - Vêtements ignifugés et chaussures antidérapantes.

### 2. Respect des consignes de sécurité :

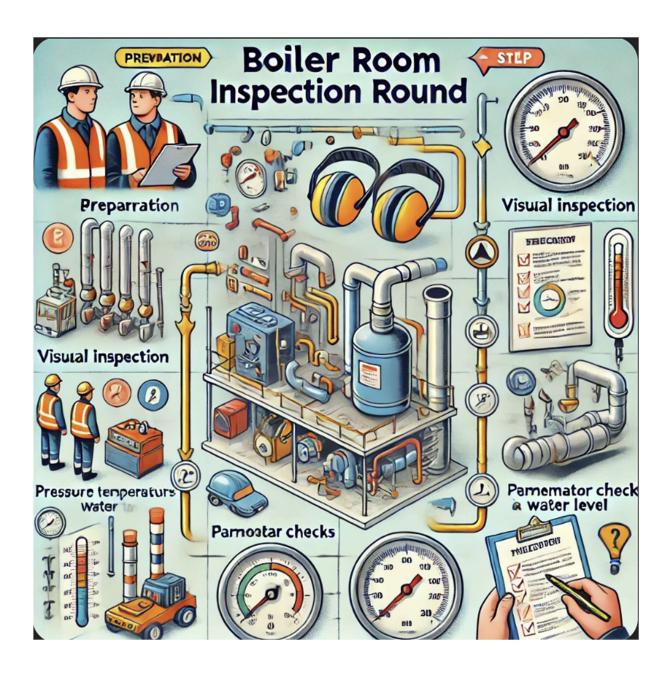
- Suivre les procédures de l'établissement.
- S'assurer que les équipements sont en bon état avant chaque utilisation.

#### 3. Formation et sensibilisation continue:

- Mise à jour régulière des connaissances.
- o Exercices pratiques pour réagir rapidement en cas d'incident.

# 3.4 Procédures en Cas de Détection d'un Risque

1. Appliquer les mesures d'urgence prévues (évacuation, appel des secours).


# En cas d'alarme:

1. Suivre les étapes indiquées dans les consignes spécifiques.

#### Résumé des Points Clés

- 1. La prévention repose sur une bonne identification des risques et une utilisation correcte des dispositifs de sécurité.
- 2. Les rondiers doivent toujours porter les EPI et respecter les consignes.
- 3. En cas d'incident, des procédures claires permettent de réagir rapidement et de limiter les conséquences.

# Module 4: Rondes de Surveillance



#### 4.1 Organisation des Rondes

Les rondes constituent une part essentielle des responsabilités du rondier. Elles permettent d'assurer la surveillance régulière et proactive des équipements sous pression (ESP).

### Objectifs des rondes :

- 1. Vérifier le bon fonctionnement des installations.
- 2. Identifier les anomalies ou les défaillances.
- 3. Consigner les observations pour garantir une traçabilité.

#### Fréquence des rondes :

- Déterminée par la taille de l'installation, les consignes internes et les réglementations.
- Peut varier:
  - Chaufferies avec présence humaine permanente : Rondes régulières, souvent horaires.
  - Chaufferies sans présence humaine permanente : Rondes espacées avec suivi automatisé complémentaire.

#### 4.2 Étapes d'une Ronde de Surveillance

#### 1. Préparation :

- Revêtir les équipements de protection individuelle (EPI) :
  - Casque, lunettes, gants, vêtements ignifugés.
- Vérifier la disponibilité des outils nécessaires :
  - o Lampe torche, clé de maintenance, check-list.
- Consulter les consignes spécifiques :
  - o Points à surveiller, paramètres critiques.

#### 2. Inspection visuelle:

- Examiner l'ensemble des équipements pour détecter :
  - Fuites de vapeur ou d'eau.
  - Corrosion, usure des matériaux.
  - Anomalies visibles sur les dispositifs de régulation (manomètres, indicateurs).

#### 3. Contrôle des paramètres critiques :

- Pression:
  - Vérifier que la pression reste dans les plages autorisées.
- Température :
  - o Contrôler la température de l'eau ou de la vapeur.
- Niveau d'eau:
  - o Assurer que le niveau d'eau est suffisant pour éviter les surchauffes.
- 4. Vérification des dispositifs de sécurité :
  - Soupapes de sécurité :
    - o Test manuel (si autorisé) pour garantir leur fonctionnement.
  - Alarmes:
    - S'assurer que toutes les alarmes sont fonctionnelles et prêtes à se déclencher.
- 5. Enregistrement des observations :
  - Consigner les résultats de la ronde dans le registre d'exploitation.
  - Noter toute anomalie détectée, même mineure.
- 4.3 Points Critiques à Contrôler

#### Chaudière:

- Niveau d'eau.
- · Absence de fuites.
- Température et pression dans les limites autorisées.

# **Brûleur:**

- Fonctionnement normal (absence de bruits inhabituels).
- Alimentation en combustible.

#### Circuits et vannes :

- Absence de fuites.
- · Vérification de l'étanchéité des joints.

#### Dispositifs de régulation et sécurité :

- Manomètres: Lecture correcte.
- Alarmes : Vérification du déclenchement.
- Soupapes : Absence de blocage.

#### 4.4 Procédures en Cas de Détection d'Anomalies

#### 1. Fuite détectée :

- o Identifier rapidement la source.
- Si la fuite est critique, isoler la zone et avertir les responsables.
- Enregistrer les détails dans le registre.
- 2. Pression ou température hors des plages normales :
  - o Réduire la charge thermique.
  - Vérifier les dispositifs de régulation.
  - o Consulter un technicien si le problème persiste.
- 3. Défaillance d'un dispositif de sécurité :
  - Notifier immédiatement le responsable technique.
  - o Interrompre l'exploitation si nécessaire.

#### 4.5 Consignation et Reporting / Registre d'exploitation :

- Document obligatoire pour tracer l'ensemble des observations et interventions :
  - Date et heure de la ronde.
  - o Paramètres mesurés (pression, température).
  - o Anomalies détectées.
  - Actions entreprises.

#### Résumé des Points Clés

- 1. Les rondes de surveillance garantissent la sécurité et la fiabilité des installations.
- 2. Une méthodologie rigoureuse est essentielle : préparation, inspection, contrôle, et enregistrement.

# Module 5 : Procédures Spécifiques et Réactions aux Incidents



#### **5.1 Gestion des Dysfonctionnements**

Les dysfonctionnements dans une chaufferie peuvent entraîner des situations dangereuses si elles ne sont pas rapidement et correctement gérées.

Étapes générales à suivre en cas de dysfonctionnement :

- 1. Identifier rapidement la nature du problème.
- 2. Prendre les mesures nécessaires pour sécuriser l'installation.
- 3. Notifier les responsables techniques ou l'exploitant.
- 4. Consigner l'incident dans le registre d'exploitation.

#### Principaux types de dysfonctionnements :

- Pression excessive:
  - o Identifier la cause (mauvais réglage, soupape bloquée).
  - Activer manuellement les dispositifs de décharge si nécessaire et si autorisé.
- Niveau d'eau insuffisant :
  - Vérifier l'alimentation en eau.
- Défaillance des dispositifs de sécurité :
  - Isoler la zone concernée.

#### 5.2 Réactions aux Situations d'Urgence

Cas d'urgence les plus fréquents :

- 1. Fuite de vapeur ou d'eau surchauffée :
  - o Actions immédiates :
    - Isoler la zone pour protéger le personnel.
    - Notifier les responsables.
  - Mesures complémentaires :
    - Porter des EPI adaptés pour intervenir.
- 2. Surpression dans la chaudière :
  - o Conséquences:
    - Si la surpression persiste, il peut être nécessaire de mettre la chaudière hors service. Contactez un AQI ou conducteur.

# 5.3 Procédures de Mise à l'Arrêt

### Arrêt d'urgence :

- Conditions nécessitant un arrêt immédiat :
  - o Risque imminent pour le personnel ou l'équipement.
  - Surpression non contrôlée.
  - o Fuite importante de vapeur ou d'eau.
- Étapes de mise à l'arrêt : ARRET D'URGENCE.

#### Arrêt planifié par les conducteurs :

- Réalisé dans le cadre de la maintenance ou des inspections périodiques.
- Étapes de mise à l'arrêt :
  - 1. Réduction progressive de la charge thermique.
  - 2. Vidange contrôlée de la chaudière.
  - 3. Inspection complète avant redémarrage.

## 5.4 Plan d'Intervention d'urgence et Coordination :

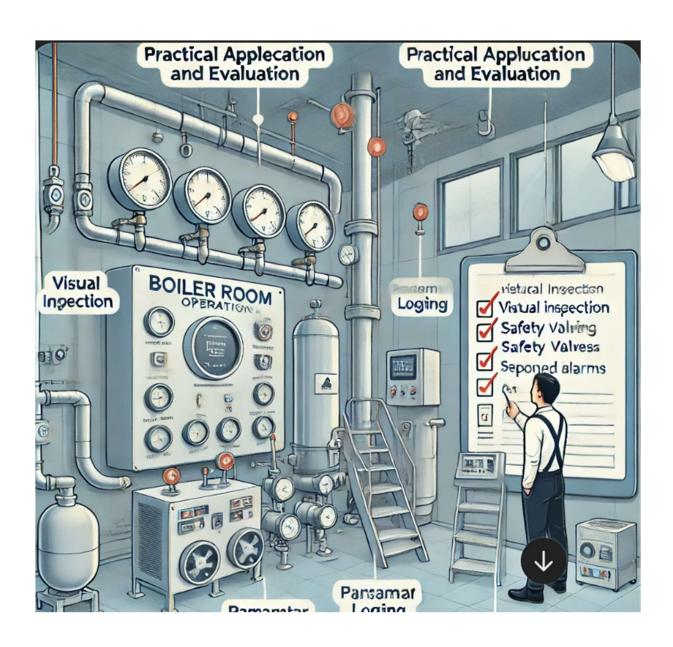
- Instructions pour chaque type d'incident.
- Coordonnées des responsables et techniciens.
- Procédures de communication avec les services d'urgence (pompiers, sécurité industrielle).

#### Rôle du rondier dans l'intervention :

- Première réponse pour contenir la situation.
- Communication claire et rapide avec les responsables.
- Suivi des consignes du plan d'urgence.

#### Résumé des Points Clés

- 1. Une réaction rapide et adaptée aux incidents est essentielle pour minimiser les risques.
- 2. Les procédures spécifiques doivent être connues et régulièrement pratiquées par le rondier.
- 3. La coordination avec les responsables et les services d'urgence est primordiale.


# Module 6 : Mise en Pratique et Évaluation théorique et pratique.

# **6.1 Exercices Pratiques**

- Identification des équipements et de leurs fonctions.
- Simulations d'anomalies et de réactions.
- Conduite de rondes de surveillance sur site ou simulateur.

# 6.2 Certification après avoir passé le test théorique en ligne.

 Délivrance du certificat d'habilitation : « Rondier Chaufferie Vapeur – Eau Surchauffée ».

